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» Cause radio blackout through changing
the structures/composition of the
ionosphere (sudden ionospheric
disturbances) — x ray and EUV emissions,
lasting minutes to hours and dayside

 Affect radio comm., GPS, directly by its
radio noises at different wavelengths

» Contribute to SEP — proton radiation,
lasting a couple of days
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Solar radio bursts during December 2006 were sufficiently intense to be measurable with GPS receivers.
The strongest event occurred on 6 December 2006 and affected the operation of many GPS
receivers. This event exceeded 1,000,000 solar flux unit and was about 10 times larger than any
previously reported event. The strength of the event was especially surprising since the solar radio
bursts occurred near solar minimum. The strongest periods of solar radio burst activity lasted a few
minutes to a few tens of minutes and, in some cases, exhibited large intensity differences between
L1 (1575.42 MHz) and L2 (1227.60 MHz). Civilian dual frequency GPS receivers were the most
severely affected, and these events suggest that continuous, precise positioning services should
account for solar radio bursts in their operational plans. This investigation raises the possibility of
even more intense solar radio bursts during the next solar maximum that will significantly impact
the operation of GPS receivers.

Cerruti, A. P,, P. M. Kintner Jr., D. E. Gary, A. J. Mannucci, R. F.
Meyer, P. Doherty, and A. J. Coster (2008), Effect of intense
December 2006 solar radio bursts on GPS receivers, Space
Weather, 6, S10D07, d0i:10.1029/2007SW000375.



SWx impacts of CME
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Contribute to SEP (particle radiation): 20-30
minutes from the occurrence of the CME/flare

* Result in a geomagnetic storm: takes 1-2
days arriving at Earth

* Result in electron radiation enhancement in
the near-Earth space (multiple CMES): takes
1-3 days

Affecting spacecraft electronics — surfacing charging/internal charging, single

event upsets

Radio communication, navigation
Power grid, pipelines, and so on
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Outline
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« Solar wind +magnetosphere interactions
* CIR and HSS impacts on Earth

* Importance of magnetosphere in space
weather

* Importance of ionosphere in space
weather



Videos

* Mysteries of the Sun

* Watch the video on ‘Earth’s
magnetosphere’

* http://www.nasa.gov/mission_pages/
sunearth/news/mystery-sun.html
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"planetarische Kennziffer" ( = planetary index).

« Geomagnetic activity index

range from 0-9 disturbance levels of
magnetic field on the ground - currents

1. Non-event - period of 12/01/2010 —
12/7/2010

2. Moderate event — April 5, 2010
3. Extreme event - Oct 29 — Oct 31, 2003

http://bit.ly/Kp_layout  Threshold Kp>=6

NASA/GSFC, internal use only :-)
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Is one important space weather contributor too!

Particularly for its role in enhancing electron
radiation levels in the near-Earth
environment and for substantial energy input
into the Earth’s upper atmosphere

May be more hazardous to Earth-orbiting
satellites than CME-related magnetic storm
particles and solar energetic particles (SEP)



CIR and HSS
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Co-rotating Interactive Regions (CIRs) are regions within the solar wind
where streams of material moving at different speeds collide and
interact with each other. The speed of the solar wind varies from less
than 300 km/s (about half a million miles per hour) to over 800 km/s
depending upon the conditions in the corona where the solar wind has
its source. Low speed winds come from the regions above helmet
streamers while high speed winds come from coronal holes.

As the Sun rotates these various streams rotate as well (co-rotation)
and produce a pattern in the solar wind much like that of a rotating lawn
sprinkler. However, if a slow moving stream is followed by a fast moving
stream the faster moving material will catch-up to the slower material
and plow into it. This interaction produces shock waves that can
accelerate particles to very high speeds.
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Figure 6. Schematic illustrating 2-D corotating stream structure in the solar equatorial plane in the
inner heliosphere (from Pizzo, 1978).
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Predicting impacts of CMEs Modeling and predicting the ambient solar wind
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Both CME and CIRs are capable of generating o
geomagnetic storms. Differs in =

magnetosphere
ionosphere
planetary

Table 1. A Summary of Some of the Important Differences Between CME-Driven Storms (Shock, Sheath,
Ejecta, Cloud) and CIR-Driven Storms (CIR, High-Speed Stream)

Phenomenon CME-Driven Storms CIR-Driven Storms
Phase of the solar cycle when dominant solar maximum declining phase
Occurrence pattern irregular 27-day repeating
Calm before the storm sometimes usually
Solar energetic particles (SEP) sometimes none
Storm sudden commencement (SSC) common mfrequent
Mach number of the bow shock moderate high
3 of magnetosheath flow low high
Plasma-sheet density very superdense superdense
Plasma-sheet temperature hot hotter
Plasma-sheet O"/H" ratio extremely high elevated
Spacecraft surface charging less severe more severe_
Ring current (Dst) stronger weaker
Global sawtooth oscillations sometimes no
ULF pulsations shorter duration longer duration
Dipole distortion very strong strong
Saturation of polar-cap potential sometimes no
Fluxes of relativistic electrons less severe NOre Severe
Formation of new radiation belts sometimes no
Convection interval shorter longer
Great aurora sometimes rare
Geomagnetically induced current (GIC) sometimes no

Borovsky, J. E. and M. H. Denton ( 2006 ), Differences between
CME-driven storms and CIR-driven storms , J. Geophys. Res. ,
111, A07S08, doi:10.1029/2005JA011447.
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CIR HSS: usually long-duration (3-4
days)
Radiation belt electron flux enhancement
Surface charging
Geomagnetic disturbances (moderate at
most)
heating of upper atmosphere: satellite
drag

Energetic electron radiation: ( the >0.8 MeV electron flux

exceeding 1075 pfu alert threshold): takes 2-3 days from the
CIR interface

Although geomagnetic activity (due to CIR HSS) during the declining and
minimum phases of the solar cycle appears to be relatively benign (especially
in comparison to the dramatic and very intense magnetic storms caused by
interplanetary coronal mass ejections (ICMEs) that predominate during solar
maximum), this is misleading. Research has shown that the time-averaged,
accumulated energy input into the magnetosphere and ionosphere due to
high speed streams can be greater during these solar phases than due to
ICMESs during solar maximum!



Homework
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March 1, 2011 high speed streams, find out the
time of arrival and examine its behavior in
terms of speed and density profile, IMF
characteristics, when the >0.8 MeV energetic

electron flux at GOES started to exceed 1075
pfu?

June 4, 2012 HSS

You can do the homework using this iSWA layout for HSS
http://bit.ly/HSS layout 20110301



The importance of
magnetosphere and
lonosphere in SWx

NASA/GSFC, internal use only :-)



Magnetosphere and
magnetospsheric products

NASA/GSFC, internal use only :-)
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"planetarische Kennziffer" ( = planetary index).

« Geomagnetic activity index

range from 0-9 disturbance levels of
magnetic field on the ground - currents

1. Non-event - period of 12/01/2010 —
12/7/2010

2. Moderate event — April 5, 2010
3. Extreme event - Oct 29 — Oct 31, 2003

http://bit.ly/Kp_layout  Threshold Kp>=6

NASA/GSFC, internal use only :-)
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55 HSS and RBE flux enhancement

5

/.!,

4.5

4 : Ll | i e ,

35 I . il - 1

25 H B 1'& . | | ' |
2 | ‘ A ! | 1

0.5

1
May 10 Jun 10 Jul 10 Aug 10 Sep 10 Oct 10 Nov 10 Dec 10 Jan 11 Feb 11
t : i

800

700
600
500

400

300

1
200

May 10 Jun 10 Jul 10 Aug 10 Sep 10 Oct 10 Nov 10 Dec 10 Jan 11 Feb 11
¥ Bulk Speed Zoom: In Out full Pan: left right




 >10 MeV flux by GOES spacecraft

Threshold: 10 pfu
— Non —event Dec1-7, 2010
— Event: Aug 14 - 18, 2010

NASA/GSFC, internal use only :-)



* 10 <=6.6 Re — model product
— Events: Dec 28, 2010 Degree of compression of MP

Due to Pdyn of solar wind
- Jan 7,201 O kp=>5 at 22:30 UT on 1/6/2011 (interp|anetary shock /HSS)

— Non-event: Dec 1 -7, 2010

Magnetosheath



An iSWA layout for magnetospheric

products




Videos

* Mysteries of the Sun

» Watch the video on ‘Earth’s upper
atmosphere’
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* Aurora —hemispheric power
e Satellite drag due to neutrals

» Equatorial bubbles/irregularities —
scintillation, communication problems

http://bit.ly/iono_layout

Products demo

Auroral power

Auroral oval

TEC map
CTIPe products An iSWA layout for ionosphere products

Scintillation index S4

HF absorption map

NASA/GSFC, internal use only :-)



* plasma bubbles: typical east—west dimensions of
several hundred kilometers

— contain irregularities with scale-lengths ranging from
tens of kilometers to tens of centimeters ( Woodman
and Tsunoda). Basu et al. (1978) showed that between
sunset and midnight, 3-m scale irregularities that
cause radar backscatter at 50 MHz, co-exist with sub-
kilometer scale irregularities that cause VHF and L-
band scintillations. After midnight, however, the radar
backscatter and L-band scintillations decay but VHF

scintillations caused by km-scale irregularities persist
for several hours.

Journal of Atmospheric and Solar-
Terrestrial Physics Volume 61, Issue 16, 1
November 1999, Pages 1219-1226

NASA/GSFC, internal use only :-)



